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Abstract In this paper, we present sufficient global optimality conditions for weakly
convex minimization problems using abstract convex analysis theory. By introducing
(L, X)-subdifferentials of weakly convex functions using a class of quadratic functions,
we first obtain some sufficient conditions for global optimization problems with weakly
convex objective functions and weakly convex inequality and equality constraints.
Some sufficient optimality conditions for problems with additional box constraints
and bivalent constraints are then derived.

Keywords Global optimization · Optimality conditions · Weakly convex
minimization

AMS Subject Classification 41A65 · 41A29 · 90C30

1 Introduction

Sufficient optimality conditions in global optimization for some special kinds of
nonconvex optimization problems have been studied by many researchers (see for
example [1–6,10] and references therein). Recently, a new approach for establishing
sufficient conditions was suggested in Refs. [7,8,12,15]. This approach is based on abs-
tract convex analysis (see, for e.g., [9,11,13]) as (L, X)-subdifferential and L-normal
cone, where L is a set of real valued functions defined on R

n, X ⊂ R
n.
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It was shown in Refs. [7,8,15] that (L, X)-subdifferential with respect to certain
sets of quadratic functions can be successfully applied to derive sufficient global
optimality conditions for nonconvex problems with a quadratic objective function
subject to quadratic constraints and/or box constraints and bivalent constraints.

In this paper, we extend the approach based on abstract convexity for examination
of a large class of optimization problems with weakly convex functions involved (see
Definition 2.1). The class of weakly convex functions is very large: an arbitrary C2

nonconvex function defined on a compact set is a weakly convex function. In this paper,
we study the global optimality conditions for optimization problems with weakly
convex functions involved using (L, X)-subdifferentials where L is the following set
of quadratic functions:

L = {l : l(x) = α‖x‖2 + xTβ, α ∈ R, β ∈ R
n}.

Let H be the set of L-affine functions h(x) = l(x)+c, l ∈ L, c ∈ R. Abstract convexity
with respect to the set H has been studied by many authors (see [9,11] and references
therein).

The layout of the rest of the paper is as follows. Section 2 presents the notions
of (L, X)-subdifferentials, L-normal cones, and weakly convex functions. Sufficient
conditions for a class of nonconvex minimization problems are presented in Sect. 3.
This section contains also description of (L, X)-subdifferentials and sufficient condi-
tions for global minimizers of weakly convex problems. Section 4 derives optimality
conditions for some special cases of weakly convex minimization problems.

2 Preliminaries

In this section, we present basic definitions that will be used throughout the paper.
We use the following notation: R+∞ = R ∪ {+∞}, R

n is an n-dimensional Euclidean
space with the inner product 〈x, y〉 = ∑n

i=1 xiyi and ‖x‖ = √〈x, x〉. Let X be a set
and f : X → R+∞. Then dom f := {x ∈ X : f (x) < +∞}. A function f : X → R+∞
is called proper if dom f 
= ∅. Let H be a set of functions h : X → R. A function
f : X → R ∪ {+∞} is called abstract convex with respect to H (H-convex) at a point
x̄ ∈ X if there exists a set U ⊂ H such that sup{h(x) : h ∈ U} ≤ f (x) for all x ∈ X
and f (x̄) = sup{h(x̄) : h ∈ U}. If f is H-convex at each point x̄ ∈ X then f is called
H-convex on X.

Let L be a set of finite functions defined on R
n and X ⊂ R

n. Let f: R
n → R+∞ and

x0 ∈ dom f . An element l ∈ L is called an (L, X)-subgradient of f at a point x0 ∈ X
respect to X if

f (x) ≥ f (x0) + l(x) − l(x0), for each x ∈ X.

The set ∂L,Xf (x) of all (L, X)-subgradients of f at x0 with respect to X is referred to
as (L, X)-subdifferential of f at x0 with respect to X.

Let HL be the set of all functions h(x) = l(x) − c with l ∈ L and c ∈ R. It is easy
to check that ∂L,Xf (x̄) 
= ∅ if and only if f (x̄) = max{h(x̄) : h ∈ supp (f , HL)} where
supp (f , HL) is the set of all functions h ∈ HL such that h(x) ≤ f (x) for all x ∈ X. So
the nonemptiness of L-subdifferential ∂L,Xf (x̄) implies HL-convexity of f at x̄.

If L is the set of all linear functions defined on R
n and X ⊂ R

n is an open convex
set then for any proper lower semicontinuous convex function f : R

n → R+∞ and
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x ∈ X we have ∂L,Xf (x) = ∂f (x), where ∂f (x) is the subdifferential of f in the sense of
convex analysis.

Let D ⊂ R
n and L be a cone of functions l: R

n → R. The normal cone of D with
respect to L at a point x ∈ D is given by

NL,D(x) := {l ∈ L : l(y) − l(x) ≤ 0 for any y ∈ D}.
It is easy to see that

NL,D(x) = ∂L,XδD(x), x ∈ D,

where X = R
n and the indicator function δD: R

n → R+∞ is defined as

δD(x) =
{

0 if x ∈ D,
+∞ if x /∈ D

and ∂L,XδD(x) is the (L, X)-subdifferential of δD at x with respect to X. We know that
if D is a convex set, ND(x) = ∂δD(x), where ND(x) is the normal cone of set D in the
sense of convex analysis. Observe that if L is the set of all linear functions defined on
R

n, D is a convex set, then

NL,D(x) = ∂L,XδD(x) = ∂δD(x) = ND(x)

for any x ∈ D, where X = R
n.

Definition 2.1 Let X ⊂ R
n be a convex set and let ρ be a real number. A function

f : X → R is said to be a ρ-convex function over X if there exists a convex function
h: X → R such that f (x) = h(x) + ρ‖x‖2 for any x ∈ X.

If ρ < 0, then f is said to be a weakly convex function over X.

It is known (see [9] and references therein) that a function f is ρ-convex if and only
if f is ρ-paraconvex, that is

f (tx + (1 − t)y) ≤ tf (x) + (1 − t)f (y) − ρt(1 − t)‖x − y‖2

for all x, y ∈ R
n and t ∈ (0, 1). Definition 2.1 is given in Ref. [14] for X = R

n. Obviously,
if ρ ≥ 0, then f is a convex function on X. In this paper, we consider optimization
problems with weakly convex functions involved.

3 Sufficient global optimality conditions

3.1 Sufficient conditions in terms of (L, X)-subdifferentials and L-normal cones

Consider the following optimization problem (P):

minimize g0(x) subject to gi(x) ≤ 0, i = 1, . . . , m, x ∈ S, (3.1)

where S ⊂ R
n and gi is a function defined on a set X ⊃ S, i = 0, 1, . . . , m. For a given

λ := (λ1, . . . , λm)T ∈ R
m+ , define

Fλ(x) : = g0(x) +
m∑

i=1

λigi(x), (3.2)

C : = {x ∈ S | gi(x) ≤ 0, i = 1, . . . , m}. (3.3)
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Theorem 3.1 (Sufficient conditions for global minimizer) Let L be a set of real-valued
functions defined on R

n and −l ∈ L for each l ∈ L. Let x̄ ∈ C. If there exists a
λ = (λ1, . . . , λm)T ∈ R

m+ such that λigi(x̄) = 0, i = 1, . . . , m and

− ∂L,XFλ(x̄) ∩ NL,S(x̄) 
= ∅ (3.4)

then x̄ is a global minimizer of problem (P).

Proof Let x ∈ C. The condition (3.4) implies that there exist λ ∈ R
m+ such that

λigi(x̄) = 0, i = 1, . . . , m and l ∈ NL,S(x̄) with −l ∈ ∂L,XFλ(x̄). Then,

g0(x) − g0(x̄) ≥ Fλ(x) − Fλ(x̄) ≥ −l(x) + l(x̄).

The inclusion l ∈ NL,S(x̄) implies that l(x) − l(x̄) ≤ 0. Hence, g0(x) − g0(x̄) ≥ 0. Since
x ∈ C is arbitrary, x̄ is a global minimizer of problem (P). �

In Sect. 4, we will apply Theorem 3.1 to examine some problems with ρ-convex
functions involved.

Corollary 3.1 Let gi, i = 0, 1, . . . , m be proper lower semicontinuous convex functions
on R

n, S ⊂ R
n be a convex set and let x̄ ∈ C. If there exists a λ ∈ R

m+ such that
λigi(x̄) = 0, i = 1, . . . , m and

− ∂Fλ(x̄) ∩ NS(x̄) 
= ∅ (3.5)

then x̄ is a global minimizer of problem (P).

Proof The conclusion follows from Theorem 3.1 by taking L as the set of all linear
functions defined on R

n. �

3.2 (L, X)-subdifferential of continuously differentiable functions

In this paper, we mainly consider the following set L of elementary functions:

L =
{

l | l(x) = α‖x‖2 + xTβ, α ∈ R, β ∈ R
n
}

. (3.6)

In order to apply the sufficient conditions given in previous subsection we need to
calculate L-subdifferential with respect to a set X for some classes of functions.

Let f be a continuously differentiable function defined on an open convex set
X ⊃ S. We begin with the description of ∂L,Xf (x) under some assumptions.

Theorem 3.2 Let x̄ = (x̄1, . . . , x̄n) ∈ S, l ∈ L with l(x) = α‖x‖2 + βTx and let ϕ(x) :=
f (x) − l(x). Assume that ϕ(x) is convex on X and f is continuously differentiable at x̄ .
Then l ∈ ∂L,Xf (x̄) if and only if 2αx̄ + β = ∇f (x̄).

Proof By definition, l ∈ ∂L,Xf (x̄) with l(x) = α‖x‖2 + βTx if and only if

l(x) − l(x̄) ≤ f (x) − f (x̄) for any x ∈ X, (3.7)

i.e.,

ϕ(x) − ϕ(x̄) ≥ 0 for any x ∈ X.

Thus, l ∈ ∂L,Xf (x̄) if and only if x̄ is a global minimizer of ϕ(x) on X. If ϕ(x) is convex
on X and if ϕ(x) is continuously differentiable at x̄, then x̄ is a global minimizer of
ϕ(x) on X if and only if ∇ϕ(x̄) = 0, i.e., 2αx̄ + β = ∇f (x̄). �
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Remark 3.1 Let f be a continuously differentiable weakly convex function defined on
X, where X ⊃ S is an open convex set. It follows from Theorem 3.2, that ∂L,Xf (x̄) 
= ∅
for any x̄ ∈ S, which implies that f is HL-convex on S, where HL = {l+c | l ∈ L, c ∈ R}.
But conversely, if f is HL-convex on S, then f may not be a ρ-convex function on S.

For example, let f (x) =
{

x3 sin( 1
x ) x 
= 0,

0 x = 0
and let S = R. By Ref. [11], we know that

f is an HL−convex function if and only if f is lower semicontinuous and there exists a
h ∈ HL such that f (x) ≥ h(x) for all x ∈ R. Obviously, f is a continuously differentiable
HL−convex function on R, but we can easily verify that f is not a ρ-convex function
on R.

Corollary 3.2 Let x̄ = (x̄1, . . . , x̄n) ∈ S, l ∈ L with l(x) = α‖x‖2 + βTx and let f be
twice continuously differentiable on X, H(x) be the Hessian matrix of f at a point x and

µf ,X := inf
x∈X,‖y‖=1

yTH(x)y. (3.8)

If µf ,X ≥ 2α, then l ∈ ∂L,Xf (x̄) if and only if 2αx̄ + β = ∇f (x̄).

Proof Let ϕ(x) := f (x) − l(x). Since f is twice continuously differentiable on X and
2α ≤ µf ,X , we have that ϕ(x) = f (x) − l(x) is convex on X. The result follows from
Theorem 3.2. �

Note that if X is a bounded set, then for each twice continuously differentiable
function f on X there exists a ρ such that f is a ρ-convex function on X. Indeed,
µf ,X > −∞ since X is bounded.

Consider a continuously differentiable function f . Assume that the mapping x �→
∇f (x) is Lipschitz continuous on X:

Kf ,X := sup
x,y∈X,x 
=y

‖∇f (x) − ∇f (y)‖
‖x − y‖ < +∞. (3.9)

It was shown in Ref. [12] that such a function can be represented as the minimum of
a family of functions of the form h(x) = l(x) + c with l ∈ L and c ∈ R. The explicit
description of this family also was given in Ref. [12]. Using this description we can
characterize some elements of the (L, X)-subdifferential.

Proposition 3.1 Let x̄ ∈ S and let X be a convex open set containing S. Assume that
f is a differentiable function defined on X and (3.9) holds. Let α ≤ −Kf ,X. Then, for
l(x) = α‖x‖2 + βTx, it holds l ∈ ∂L,Xf (x̄) if and only if 2αx̄ + β = ∇f (x̄).

Proof For any t ∈ X, let α ≤ −Kf ,X and let ft(x) := f (t) + 〈∇f (t), x − t〉 + α‖x − t‖2

and lt(x) := α‖x‖2 + 〈∇f (t) − 2αt, x〉. Then,

ft(x) = lt(x) + f (t) − lt(t).

First, we prove that f (x) = maxt∈X ft(x), x ∈ X. Applying the mean value theorem
we can find for each x, y ∈ X a number θ ∈ [0, 1] such that:

(−f (x)) − (−f (y)) = [−∇f (y + θ(x − y)), x − y], θ ∈ [0, 1]
therefore

f (y) − f (x) + [∇f (y), x − y] = [−∇f (y + θ(x − y)) + ∇f (y), x − y]
≤ ‖[−∇f (y + θ(x − y)) + ∇f (y)‖‖x − y‖
≤ Kf ,Xθ‖x − y‖2 ≤ Kf ,X‖x − y‖2 ≤ −α‖x − y‖2.
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This means that

f (x) ≥ f (y) + [∇f (y), x − y] + α‖x − y‖2 := fy(x), x ∈ X.

Since f (x) = fx(x) it follows that f (x) = maxt∈X ft(x) for all x ∈ X. Thus, for any given
x̄ ∈ S, we have that

f (x) ≥ fx̄(x) = lx̄(x) + f (x̄) − lx̄(x̄), ∀x ∈ X.

Thus, for lx̄(x) = α‖x‖2 + 〈∇f (x̄) − 2αx̄, x〉, it holds lx̄ ∈ ∂L,Xf (x̄).

Conversely, if l(x) := α‖x‖2 + βTx ∈ ∂L,Xf (x̄), then x̄ is a global minimizer of
f (x) − l(x) on X. Thus, x̄ is a local minimizer of f (x) − l(x). Hence ∇f (x̄) − ∇l(x̄) =
∇f (x̄) − 2αx̄ − β = 0 since X is an open set. �

For any twice continuously differentiable function f we have

Kf ,X ≥ µf ,X ,

where Kf ,X and µf ,X are defined by (3.9) and (3.8), respectively. Indeed, for any
x, y ∈ X, x 
= y, there exists a θ ∈ [0, 1] such that

Kf ,X ≥ ‖∇f (x) − ∇f (y)‖
‖x − y‖ = ‖H(y + θ(x − y))(x − y)‖

‖x − y‖
≥ |(x − y)TH(y + θ(x − y))(x − y)|

‖x − y‖2 ≥ (x − y)TH(y + θ(x − y))(x − y)

‖x − y‖2

≥ µf ,X .

A description of L-subdifferential for quadratic functions has been given in Ref. [8].

Proposition 3.2 Let x̄ = (x̄1, . . . , x̄n)T ∈ S, X be an open convex set containing S, l ∈ L
with l(x) = α‖x‖2 +βTx and let f be a quadratic function with f (x) = 1

2 xTBx+bTx+c,
where B is a symmetric matrix. Let µB be the minimal eigenvalue of matrix B. Then
l ∈ ∂L,Xf (x̄) if and only if α ≤ µB and β = b + (Bx̄ − 2αx̄).

3.3 Sufficient conditions for global minimizers of ρ-convex problems

In this subsection, we will give sufficient optimality conditions for some ρ−convex
programming problems (P) defined by (3.1).

Theorem 3.3 Let x̄ = (x̄1, . . . , x̄n)T ∈ C and let X be an open convex set such that
X ⊃ S. Assume that g0 and gi, i = 1, . . . , m are continuously differentiable on X. For
α ∈ R, β = (β1, . . . , βn)T ∈ R

n consider the function lα,β(x) = α‖x‖2 + βTx. If there
exist λ = (λ1, . . . , λm)T ∈ R

m+ and α ∈ R, β ∈ R
n such that

Fλ(x) + α‖x‖2 is convex on X,
−2αx̄ − β = ∇Fλ(x̄)

(3.10)

and

λigi(x̄) = 0, i = 1, . . . , m,
lα,β ∈ NL,S(x̄)

then x̄ is a global minimizer of problem (P).
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Proof By Theorem 3.2, we know that if there exist α ∈ R and β ∈ R
n such that (3.10)

holds, then −lα,β ∈ ∂L,XFλ(x̄). If also lα,β ∈ NL,S(x̄) then l ∈ −∂L,XFλ(x̄) ∩ NL,S(x̄).
Thus, the result follows from Theorem 3.1. �

Let g0 and gi, i = 0, 1, . . . , m be ρi-convex functions on X, then there must exist ρλ,
such as, ρλ := ρ0 + ∑m

i=1 λiρi such that Fλ is ρλ-convex. In such a case there exist α

and β such that (3.10) holds. (See Remark 3.1.)
We now show how to choose numbers ρi and ρλ in the case of quadratic functions.

Let gi, i = 0, 1, . . . , m be quadratic functions with gi(x) = xTAix+aT
i x, i = 0, 1, . . . , m,

where Ai, i = 0, 1, . . . , m are symmetric matrices. For a given λ ∈ R
m+ , let

Aλ := A0 +
m∑

i=1

λiAi. (3.11)

Then, here we can take

ρλ = µ(Aλ), ρi := µ(Ai), i = 1, . . . , m

or take

ρλ = µ(A0) +
m∑

i=1

λiµ(Ai),

where µ(A) is the minimal eigenvalue of A. Note that here µ(Aλ) and µ(A0) +∑m
i=1 λiµ(Ai) may be different and generally, µ(Aλ) ≥ µ(A0) + ∑m

i=1 λiµ(Ai).
Consider now twice continuously differentiable functions gi defined on X, where X

is a bounded set. Let Gi(x) and Hλ(x) be the Hessian matrices of gi and Fλ, respectively.
Then we can take

ρi ≤ inf
‖y‖=1,x∈X

yTGi(x)y

and

ρλ ≤ inf
‖y‖=1,x∈X

yTHλ(x)y.

4 Sufficient conditions for special cases of ρ-convex problems

In this section, we give sufficient conditions for some classes of ρ-convex problems.

4.1 Problems with ρ-convex inequality constraints

Consider the following problem (WP1):

minimize g0(x) subject to gi(x) ≤ 0, i = 1, . . . , m, x ∈ R
n, (4.1)

where gi, i = 0, 1, . . . , m are ρi−convex functions on R
n. Let X = R

n. It was mentioned
in the previous section that for each λ ∈ R

m+ there exists ρλ such that the function
Fλ(x) = g0(x) + ∑m

i=1 λigi(x) is ρλ-convex.
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Theorem 4.1 Let λ = (λ1, . . . , λm)T ∈ R
m+ be a vector such that λigi(x̄) = 0, i =

1, . . . , m and let ρλ be a number such that Fλ is ρλ- convex. Let x̄ = (x̄1, . . . , x̄n)T ∈ C.
Assume that gi, i = 0, 1 . . . , m are continuously differentiable on R

n. If ρλ ≥ 0 and

∇g0(x̄) +
m∑

i=1

λi∇gi(x̄) = 0

then x̄ is a global minimizer of problem (WP1).

Proof Let l(x) = −ρλ‖x‖2 + βx, where β ∈ R
n. Then, we can verify that l ∈ NL,Rn(x̄)

if and only if

ρλ ≥ 0 and β = 2ρλx̄.

Indeed, l ∈ NL,Rn(x̄) if and only if for any x ∈ R
n,

−ρλ‖x‖2 + βx − [−ρλ‖x̄‖2 + βx̄] = −ρλ‖x − x̄‖2 + (β − 2ρλx̄)(x − x̄) ≤ 0,

which is equivalent to

ρλ ≥ 0 and β = 2ρλx̄.

By definition of ρλ, the function Fλ(x) − ρλ‖x‖2 is convex on R
n. Furthermore, we

can easily verify that if ∇g0(x̄) + ∑m
i=1 λi∇gi(x̄) = 0, then the condition (3.10) holds.

Thus, the result follows from Theorem 3.3. �

Corollary 4.1 Let x̄ = (x̄1, . . . , x̄n)T ∈ C. Assume that gi, i = 0, 1 . . . , m are conti-
nuously differentiable ρi-convex functions on X. Let λ = (λ1, . . . , λm)T ∈ R

m+ be such
that λigi(x̄) = 0, i = 1, . . . , m. Let

αλ := ρ0 +
m∑

i=1

λiρi. (4.2)

If αλ ≥ 0 and

∇g0(x̄) +
m∑

i=1

λi∇gi(x̄) = 0.

Then x̄ is a global minimizer of problem (WP1).

It follows from Theorem 4.1 by taking ρλ = αλ.
Consider now the following problem (WEP) with both inequality and equality

constraints:

minimize g0(x) subject to gi(x) ≤ 0, i = 1, . . . , m, hj(x) = 0, j = 1, . . . , k, x ∈ R
n,

where gi and hj are continuously differentiable function defined on a set X; gi(x) is
a ρi-convex function, hj(x) is a γj-convex function, and −hj is a δj-convex function,
i = 0, 1, . . . , m, j = 1, . . . , k. Let CE := {x ∈ R

n | gi(x) ≤ 0, hj(x) = 0, i = 1, . . . , m, j =
1, . . . , k}.

The following assertion holds:
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Proposition 4.1 Let x̄ = (x̄1, . . . , x̄n)T ∈ CE. Suppose that gi, hj, i = 0, 1 . . . , m, j =
1, . . . , k are as above and suppose that there exist λ = (λ1, . . . , λm) ∈ R

m+ and µ =
(µ1, . . . , µk)T ∈ R

k such that λigi(x̄) = 0, i = 1, . . . , m and

∇g0(x̄) +
m∑

i=1

λi∇gi(x̄) +
k∑

j=1

µj∇hj(x̄) = 0. (4.3)

If αλ,µ ≥ 0, then x̄ is a global minimizer of problem (WEP), where

αλ,µ := ρ0 +
m∑

i=1

λiρi +
k∑

j=1

(µ+
j γj + µ−

j δj), (4.4)

µ+
j := max{µj, 0} and µ−

j := max{−µj, 0}.
Proof Obviously, problem (WEP) is equivalent to the following problem (WEP1):

minimize g0(x)

subject to gi(x) ≤ 0, i = 1, . . . , m,

hj(x) ≤ 0, j = 1, . . . , k,

−hj(x) ≤ 0, j = 1, . . . , k,

x ∈ R
n,

i.e., x̄ is a global minimizer of problem (WEP) if and only if x̄ is a global minimizer of
problem (WEP1). By Corollary 4.1, we know that if there exist a λ = (λ1, . . . , λm)T ∈
R

m+ and a µ = (µ1, . . . , µk)T ∈ R
k such that

αλ,µ ≥ 0, λigi(x̄) = 0, i = 1, . . . , m

and

∇g0(x̄) +
m∑

i=1

λi∇gi(x̄) +
k∑

j=1

µ+
j ∇hj(x̄) +

k∑

j=1

µ−
j (−∇hj(x̄)) = 0 (4.5)

then x̄ is a global minimizer of problem (WEP1). Obviously, (4.5) is equivalent to
(4.3). Thus, if there exist a λ = (λ1, . . . , λm)T ∈ R

m+ and a µ = (µ1, . . . , µk)T ∈ R
k such

that

αλ,µ ≥ 0, λigi(x̄) = 0, i = 1, . . . , m

and (4.3) holds, then x̄ is a global minimizer of problem (WEP). �
Note that Proposition 4.1 coincides with Theorem 5.2 in Ref. [14] and note that

all the multipliers of αλν are nonnegative, which can assure that the function g0(x) +
∑m

i=1 λigi(x) + ∑k
i=1 µjhj(x) is a αλν-convex function.

4.2 Problems with ρ-convex inequality constraints and box constraints

Consider the following problem (WP2):

minimize g0(x) subject to gi(x) ≤ 0, i = 1, . . . , m, x ∈ S =
n∏

i=1

[ui, vi],

(4.6)
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where gi, i = 0, 1, . . . , m are ρi−convex functions on X, X is an open bounded convex
set such that R

n ⊃ X ⊃ S. Let U = (u1, . . . , un)T , V = (v1, . . . , vn)T . By definition
of ρi-convexity, hi(x) = gi(x) − ρi‖x‖2, i = 0, 1, . . . , m is a convex function on X
(i = 0, 1, . . . , m). Let C = {x ∈ ∏n

i=1[ui, vi] | gi(x) ≤ 0, i = 1, . . . , m}. For x̄ =
(x̄1, . . . , x̄n)T ∈ C, let

x̃i : =
⎧
⎨

⎩

1, x̄i ∈ (ui, vi),
−1, x̄i = ui,
1, x̄i = vi,

(4.7)

X̃ : = diag(̃x1, . . . , x̃n), (4.8)

x̂i : =
⎧
⎨

⎩

−1, x̄i ∈ (ui, vi),
−1, x̄i = ui,
1, x̄i = vi,

(4.9)

X̂ : = diag(̂x1, . . . , x̂n). (4.10)

Theorem 4.2 Let x̄ = (x̄1, . . . , x̄n)T ∈ C. Assume that gi, i = 0, 1, . . . , m are conti-
nuously differentiable ρi-convex functions on X. Suppose that there exists a λ =
(λ1, . . . , λm)T ∈ R

m+ such that λigi(x̄) = 0, i = 1, . . . , m. Let ρλ be a number such
that Fλ is ρλ-convex. Suppose either of the following holds:

1. ρλ ≥ 0 and

X̃∇Fλ(x̄) ≤ 0, X̂∇Fλ(x̄) ≤ 0; (4.11)

2. ρλ < 0 and for any i = 1, . . . , n, either x̄i = ui or x̄i = vi and

X̃∇Fλ(x̄) ≤ ρλ(V − U). (4.12)

Then, x̄ is a global minimizer of problem (WP2).

Proof The function Fλ(x) − ρλ‖x‖2 is convex on X due to the choice of ρλ. Let
β = 2ρλx̄ − ∇Fλ(x̄) and l(x) = −ρλ‖x‖2 + βTx. Let us check that if either (4.11) or
(4.12) holds, then l ∈ NL,S(x̄). Indeed, l ∈ NL,S(x̄) if and only if

− ρλ

n∑

i=1

(xi − x̄i)
2 + (β − 2ρλx̄)(x − x̄) ≤ 0 for each x ∈ S. (4.13)

Since S = ∏n
i=1[ui, vi], it follows that (4.13) is equivalent to

− ρλ(xi − x̄i)
2 + (βi − 2ρλx̄i)(xi − x̄i) ≤ 0 for any xi ∈ [ui, vi], i = 1, . . . , n.

(4.14)

1. Let ρλ ≥ 0. Then (4.14) is equivalent to the following condition:

(a) βi − 2ρλx̄i = −(∇Fλ(x̄))i = 0 if x̄i ∈ (ui, vi),
(b) βi − 2ρλx̄i = −(∇Fλ(x̄))i ≤ 0 if x̄i = ui,
(c) βi − 2ρλx̄i = −(∇Fλ(x̄))i ≥ 0 if x̄i = vi.

(4.15)

Indeed,

ρλ(xi − x̄i)
2 − (βi − 2ρλx̄i)(xi − x̄i) ≥ 0 for any xi ∈ [ui, vi]

if and only if x̄i is a global minimizer of convex function ri(xi) = ρλ(xi − x̄i)
2 −(βi −

2ρλx̄i)(xi − x̄i) on [ui, vi]. Consider separately three cases: x̄i ∈ (ui, vi), x̄i = ui,
x̄i = vi.
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(a) If x̄i ∈ (ui, vi), then r′
i(x̄i) = βi − 2ρλx̄i = 0;

(b) Let x̄i = ui. Then

ρλ(xi − ui)
2 − (βi − 2ρλui)(xi − ui) ≥ 0 for any xi ∈ [ui, vi]

if and only if −ρλ(xi − ui) + (βi − 2ρλui) ≤ 0 for any xi ∈ (ui, vi], i.e., βi −
2ρλui ≤ 0;

(c) Let x̄i = vi. Then

ρλ(xi − vi)
2 − (βi − 2ρλvi)(xi − vi) ≥ 0 for any xi ∈ [ui, vi]

if and only if −ρλ(xi − vi) + βi − 2ρλvi ≥ 0 for any xi ∈ [ui, vi), i.e., βi −
2ρλvi ≥ 0.

We have shown that (4.14) can be represented as (4.15). An easy calculation shows
that (4.15) implies (4.11). Conversely, by (4.7)–(4.10), we know that (4.11) also
implies (4.15).

2. Let ρλ < 0. We will prove that condition (4.14) holds if and only if either x̄i =
ui or x̄i = vi and

(a) −ρλ(vi − ui) − (∇Fλ(x̄))i ≤ 0 if x̄i = ui,
(b) −ρλ(ui − vi) − (∇Fλ(x̄))i ≥ 0 if x̄i = vi.

(4.16)

Indeed, if there exists 1 ≤ i ≤ n such that ui < x̄i < vi, then by (4.14),
(βi − 2ρλx̄i)(xi − x̄i) < 0 for any xi ∈ [ui, vi]\{x̄i} since −ρλ(xi − x̄i)

2 > 0 for
any xi ∈ [ui, vi] \ {x̄i}. This is impossible.

If x̄i = ui, then

ρλ(xi − x̄i)
2 − (βi − 2ρλx̄i)(xi − x̄i) ≥ 0 for any xi ∈ [ui, vi]

if and only if

−ρλ(vi − ui) + (βi − 2ρλx̄i) = −ρλ(vi − ui) − (∇Fλ(x̄))i ≤ 0;

If x̄i = vi, then

ρλ(xi − x̄i)
2 − (βi − 2ρλx̄i)(xi − x̄i) ≥ 0 for any xi ∈ [ui, vi]

if and only if

−ρλ(ui − vi) + (βi − 2ρλx̄i) = −ρλ(ui − vi) − (∇Fλ(x̄))i ≥ 0.

Thus, (4.14) implies (4.16). The converse implication can easily be verified. An easy
calculation shows that (4.16) is equivalent to (4.12). The desired result follows from
Theorem 3.3. �

Corollary 4.2 Let x̄ = (x̄1, . . . , x̄n)T ∈ C. Suppose that gi, i = 0, 1 . . . , m are ρi- convex
continuously differentiable on X functions and suppose that there exists λ ∈ R

m+ such
that λigi(x̄) = 0, i = 1, . . . , m. Let αλ be defined by (4.2). If either of the following holds:

1. αλ ≥ 0 and

X̃∇Fλ(x̄) ≤ 0, X̂∇Fλ(x̄) ≤ 0; (4.17)
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2. αλ < 0; for any i = 1, . . . , n, either x̄i = ui or x̄i = vi, and

X̃∇Fλ(x̄) ≤ αλ(V − U), (4.18)

then, x̄ is a global minimizer of problem (WP2).

Proof It follows from Theorem 4.2 by letting ρλ = αλ. �

4.3 Bivalent problems with ρ-convex inequality constraints

Consider the following bivalent problem (WP3):

minimize g0(x) subject to gi(x) ≤ 0, i = 1, . . . , m, x ∈ S =
n∏

1

{−1, 1},

where gi, i = 0, 1, . . . , m is a continuously differentiable ρi-convex functions on X, X
is an open convex bounded set such that X ⊃ ∏n

1[−1, 1]. Let CB := {x ∈ ∏n
1{−1, 1} |

gi(x) ≤ 0, i = 1, . . . , m}.
Theorem 4.3 Let x̄ = (x̄1, . . . , x̄n)T ∈ CB, X̄ = diag(x̄). Suppose that there exists
λ ∈ R

m+ such that λigi(x̄) = 0, i = 1, . . . , m. Let ρλ be a number such that Fλ is ρλ-
convex. If

X̄∇Fλ(x̄) ≤ 2ρλ1, where 1 = (1, . . . , 1) (4.19)

then x̄ is a global minimizer of problem (WP3).

Proof Let l(x) = −ρλ‖x‖2 + βTx. Then, we can verify that l ∈ NL,S(x̄) if and only if
X̄β ≥ 0. Indeed, l ∈ NL,S(x̄) if and only if

−ρλ‖x − x̄‖2 + (β − 2ρλx̄)(x − x̄) ≤ 0 for any x ∈
n∏

1

{−1, 1},

which is equivalent to

−ρλ(xi − x̄i)
2 + (βi − 2ρλx̄i)(xi − x̄i) ≤ 0 for any xi ∈ {−1, 1}, i = 1, . . . , n.

As xi − x̄i = −2x̄i if xi 
= x̄i, we know that l ∈ NL,S(x̄) if and only if

βix̄i ≥ 0, for any i = 1, . . . , n,

i.e., X̄β ≥ 0.
Furthermore, if β = 2ρλx̄ − ∇Fλ(x̄), then condition (3.10) holds. Thus, if condition

(4.19) hods, then for l(x) = −ρλ‖x‖2 + (2ρλx̄ − ∇Fλ(x̄))Tx, condition (3.10) holds and
l ∈ NL,S(x̄). Hence the result follows from Theorem 3.3. �

Corollary 4.3 Let x̄ = (x̄1, . . . , x̄n)T ∈ CB, X̄ = diag(x̄). Suppose that there exist
λ ∈ R

m+ such that λigi(x̄) = 0, i = 1, . . . , m. Let αλ be defined by (4.2). If

X̄∇Fλ(x̄) ≤ 2αλ1 (4.20)

then x̄ is a global minimizer of problem (WP3).

Proof It follows from Theorem 4.3 by taking ρλ = αλ. �
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Consider the relaxed problem (RWP3) of bivalent problem (WP3):

minimize g0(x) subject to gi(x) ≤ 0, i = 1, . . . , m, x ∈
n∏

1

[−1, 1].

Corollary 4.4 Let x̄ = (x̄1, . . . , x̄n)T ∈ CB, X̄ = diag(x̄). Suppose that there exist
λ ∈ R

m+ such that λigi(x̄) = 0, i = 1, . . . , m and suppose either of the following holds:

1. ρλ ≥ 0 and

X̄∇Fλ(x̄) ≤ 0; (4.21)

2. ρλ < 0 and

X̄∇Fλ(x̄) ≤ 2ρλ1. (4.22)

Then x̄ is a global minimizer of both problem (WP3) and problem (RWP3).

Proof It follows from Theorem 4.3 and Theorem 4.2. �

Example 4.1 Consider the following problem:

(EP2) min g0(x) = −1
3

x3
1 + x2

2 + x2x3 + x2
3 + sin x4 + 2x1 − 4x2 + 3x3 − 4x4,

s.t. g1(x) = 2x1 + 2x2 + x3 + x4 ≤ 0,

g2(x) = 3x1 − x2 + 2x3 − 4x4 + 2 ≤ 0,

−1 ≤ xi ≤ 1, i = 1, 2, 3, 4.

Let C = {x ∈ ∏4
1[−1, 1] | gi(x) ≤ 0, i = 1, 2} and let x̄ = (−1, 1, −1, 1)T . Obviously,

x̄ ∈ C, g1(x̄) = 0, g2(x̄) < 0. Let ρ0 := minx∈∏4
1[−1,1],‖y‖=1 yTH0(x)y, where H0(x) is

the Hessian matrix of g0 at point x. An easy calculation shows that ρ0 = −2. Let also
ρ1 = ρ2 = 0. Then gi is a ρi-convex function (i = 0, 1, 2). For any λ = (λ1, λ2)

T ∈ R
2+

such that λigi(x̄) = 0, i = 1, 2, we have that λ2 = 0 and αλ = −2. Then, we can easily
verify that for λ = ( 1

2 , 0)T , we have that

X̃∇Fλ (x̄) =
(

−2, −2, −5
2

, −7
2

+ cos 1
)T

≤ (−2, −2, −2, −2)T = αλ1,

i.e., condition (4.22) holds. Thus, it follows from Corollary 4.4, that x̄ is a global
minimizer of problem (EP2).

Acknowledgements The author is very thankful to Associate Professor Jeyakumar who initiated
and provided some background materials for this paper when the author was visiting the School of
Mathematics, University of New South Wales. The author is very thankful to Professor Rubinov who
helped to improve this paper. This work is partly supported by Australia Research Council Project
Grant and by program for New Century excellent talents in University of China.

References

1. Beck, A., Teboulle, M.: Global optimality conditions for quadratic optimization problems with
binary constraints.. SIAM J. Optim. 11, 179–188 (2000)

2. De Angelis, P., Pardalos, P., Toraldo, G.: Quadratic programming with box constraints.
In: Bomze, I.M., Csendes, T., Horst, R., Pardalos, P.M., (eds.) Developments in global opti-
mization (Szeged, 1995), Nonconvex Optim. Appl., vol. 18, pp. 73–93. Kluwer, Dordrecht (1997)



440 J Glob Optim (2007) 39:427–440

3. Floudas, C.A., Visweswaran, V.: Quadratic optimization. In: Horst, R., Pardalos, P.M., (eds.)
Handbook of Global Optimization, pp. 217–269. Kluwer, The Netherlands (1995)

4. Hiriart-Urruty, J.B.: Global optimality conditions in maximizing a convex quadratic function
under convex quadratic constraints. J. Glob Optim. 21, 445–455 (2001)

5. Hiriart-Urruty, J.B.: Conditions for global optimality 2. J. Glob. Optim. 13, 349–367 (1998)
6. Horst, R., Pardalos, P.: Handbook of global optimization, Nonconvex Optimization and its

Applications. Kluwer, Dordrecht (1995)
7. Jeyakumar, V., Rubinov, A.M., Wu, Z.Y.: Sufficient global optimality conditions for non-convex

quadratic optimization problems with box constraints. J. Glob. Optim. accepted
8. Jeyakumar, V., Rubinov, A.M., Wu, Z.Y.: Nonconvex quadratic minimization with quadratic

constraints: global optimality conditions. Math. Program.(A) accepted
9. Pallaschke, D., Rolewicz, S.: Foundations of Mathematical Optimization. Kluwer, Dordre-

chet (1997)
10. Pinar, M.C.: Sufficient global optimality conditions for bivalent quadratic optimization.. J. Optim.

Theor. Appl. 122(2), 443–440 (2004)
11. Rubinov, A.M.: Abstract Convexity and Global Optimization. Kluwer, (2000)
12. Rubinov, A.M., Wu, Z.Y.: Optimality conditions in global optimization and their applications.

Math. Program.(B) accepted
13. Singer, I.: Abstract convex analysis. Wiley, New York (1997)
14. Vial, J.P.: Strong and weak convexity of sets and functions. Math. Oper. Res. 8(2), 231–259 (1983)
15. Wu, Z.Y., Jeyakumar, V., Rubinov, A.: Sufficient conditions for global optimality of bivalent

nonconvex quadratic programs. J. Optim. Theory Appl. accepted


	Sufficient global optimality conditions for weakly convex minimization problems
	Abstract
	Introduction
	Preliminaries
	Sufficient global optimality conditions
	Sufficient conditions in terms of (L,X)-subdifferentials and L-normal cones
	(L,X)-subdifferential of continuously differentiable functions
	Sufficient conditions for global minimizers of -convex problems
	Sufficient conditions for special cases of -convex problems
	Problems with -convex inequality constraints
	Problems with -convex inequality constraints and box constraints
	Bivalent problems with -convex inequality constraints
	Acknowledgements


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


